I』 TEK

UT-63424G series 10 Gigabit Layer 3
Managed Ethernet Switches

1. Overview

The UT-63424G series is a high-performance, cost-effective network-
manayed industrial Ethernet layer 3 switch. This series includes two product mode s), 410 Gigabit SFP+ interfacaces, and 8 Gigabit optical-

twork data communication, but also is very suitable for large
scale industrial network applications.
This series of products supports a variety of layer 2 software features (port mirrorin
g , VLAN, port aggregation, IGMP snooping Oos , STP RSTP/ MSTP etc) and basic IP $\mathrm{V} 4 /$ /Pve layer 3 routing protocols (static routing/RIP/OSPF/VRRP), providing users w ith a complete solution and better building large-
scale LANs for industrial applications such as factory automation, intelligent transp ortation, video surveillance, etc.
2.Panel description

UT-63424G-16GP8GB-4XGP-BNA Rear Panel:

Front Papel:

2. 10 Gigabit SFP+ interface indicator light 3.10 Gigabit SFP+ interface (10 Gigabit/ 1 Gigabit adaptive)
4. 1 Gigabit Ethernet interface
5. 1 Gigabit SFP interface (combo port)
6. 1 Gigabit Ethernet interface (combo port)
8. Power input terminal

Dimmensions (Unit:mm)

3. Main Features

1.Supports 16 Gigabit SFP network interfaces (or 16 Gigabit Ethernet ports) +4 10Gbps SFP+ int erfaces +8 Gigabit optical-electric multiplexing Combo ports
2. 10 Gbps SFP+ interfaces support $10 \mathrm{G} / 1 \mathrm{G}$ auto-adaptation
3. Supports IGMP Snooping/MLD Snooping for filtering multicast packets
4. Supports IEEE 802.10 VLAN for easy network planning
5. Supports QoS with 8 queue mappings for increased network stability
7. Supports SNMPv1/v2v3 for secure network mandagey
8. Supports link aggregation (static aggregation/LACP) to optimize network bandwidth
9. Supports Access Control Lists (ACL) for enhanced flexibility and network management security 10. Supports port mirroring function for online debugging
11.Supports port rate limiting, broadcast storm suppression, multicast storm suppression, and u nknown unicast storm suppression to ensure network stability
12. Supports Layer 3 switching functions (static routing/RIP/OSPF/VRRP)
13. Supports power and port abnormal status relay output alarm functions
14. Supports wide temperature range $\left(-40^{\circ} \mathrm{C} \sim 75^{\circ} \mathrm{C}\right)$ for operation

4. Hardware Specifications

4.1 Protocol Standards

Standards: IEEE802.3, IEEE802.3u, IEEE802.3x, IEEE802.3z, IEEE802.3ab, IEEE802.1 Q, IEEE802.1p, IEEE802.1D, IEEE802.1w, IEEE802.1s, IEEE802.3ad, IEEE802.1x, IEEE8 02.3 ae

Protocols: ARP, ICMP, TCP, HTTP/HTTPS, Telnet, STP/RSTP/MSTP, LLDP, IGMP, SNM Pv1/v2c/v3, DHCP Server, NTP, SSH, IPV6, LACP, VLAN, ERPS, QINO Layer 3 Switching Technology: Static Routing, RIP V1/V2, OSPF, VRRP Support Rout er Redundancy
Flow Control: IEEE802.3x Flow Control, Backpressure Flow Control

4.2 Interfaces

Fiber Interface: 100/1000Base-
X , SFP (interface), $1 \mathrm{G} / 10 \mathrm{Gbps}$ SFP + (10 Gigabit SFP + interface)
RJ45 Interface: 10/100/1000Base-T port, MDI/MDI-X adaptive
Console Port: Serial Port Debugging (RJ45 Interface)
Alarm Port: 3-PIN Wiring Terminal, Relay Alarm Information Output
4.3 Transmission Distance

Category 5 Twisted Pair Cable: 100 m
Category 5 Twi
Fiber Module:
Single-mode: $1310 \mathrm{~nm} 20 / 40 / 60 \mathrm{Km}, 1550 \mathrm{~nm}$ 80/100/120Km
Multimode: 1310 nm 2 Km

4.4 Switching Performance

100Mbps Forwarding Rate: 148810 pps
100Mbps Forwarding Rate: 148810 pps
1000Mbps Forwarding Rate: 1488095 pps
10Gbps Forwarding Rate: 14881000 pps
Transmission Mode: Store and Forward
MAC Address Space: 16 K
Buffer Space: 12 Mb
Backplane Bandwidth: 208G
Maximum Frame Length: 9216
Host Unicast Routing Table: 1024 (IPv4), 512 (IPv6)
Network Segment Unicast Routing Table: 512 (IPv4/IPv6)
4.5 Power Requirements

Input Voltage: $110 / 220 \mathrm{VAC}(88264 \mathrm{VAC}) / 50-60 \mathrm{~Hz}$ or $110 / 220 \mathrm{VDC}$ (88264 VDC) This device uses single power input and can choose dual power redundant input.

4.6 Power Consumption

UT-63424G-16GP8GB-4XGP-BNA
Idle Power: 14.5 W
Full Load Power: 39W (Combo port as Fiber port)
Idle Power: 10.3 W
Full Load Power: 24W (Combo port as Fiber port)

4.7 Mechanical Characteristics

Enclosure: IP40 protection installatio
Weight: 3.5 kg
Mounting method: rack-mount installation
4.8 Mechanical Dimensions

Dimensions (W H D): 440 mm 44 mm 315 mm
4.9 Operating Environment
Operating temperature: $-40 \subset \sim 75$

Storage temperature: -40 C 85 C
Humidity: 095\% (non-condensing
4.10 Industry Standards

EMI:
FCC Part 15, CISPR (EN55022) class A
IEC(EN)61000-4-2(ESD)
IEC(EN)61000-4-4(EFT)
IEC(EN)61000-4-5(Surge)
IEC(EN)61000-4-6(CS
IEC(EN)61000-4-8
IEC 60068-2-27(Shock)
IEC 60068-2-32(Freefall)

Interface Definition

5.1 10/100/1000Base-T Ethernet Interface

This series of switches provide 10/100/1000Base-T ports that support cable MDI/MDIXauto recognition. In use the switch can be connected to other Ethernet terminal device s via network cables (straight or cross) through the switch port. Please refer to the pin arr angement order of the shielded twisted pair port using Category 5 e according to the follo wing figure.

Ethernet cable
The RJ45 port supports automatic MDI/MDI-
operation and can be connected to a PC or server
through cable, or to other switches or hubs. In a straight-
through (MDI) cable, pins 1, 2, 3, 4, 5, 6, 7, and 8 are connected in corresponding order. For MDI ports on switches or hubs, a crossover cable is used: $1 \rightarrow 3,2 \rightarrow 6,3 \rightarrow 1,6 \rightarrow 2,4 \rightarrow 7,5 \rightarrow 8,7 \rightarrow 4$, $\rightarrow 5$. The pin definitions for $10 / 100$ Base-T (X) are shown in the following table

Pin No.	MDI Signal	MDI-X Signal
1	TX +	RX +
2	TX-	RX-
3	RX +	TX +
6	RX-	TX-
$4,5,7,8$	-	-

1000Base-T pin map.

Pin No.	MDI Signal	MDI-X Signal
1	BI_DA+/TX+	BI_DB+/RX+
2	BI_DA-/ TX-	BI_DB-RX-
3	BI_ DB+ / RX +	BI_DA+/TX+
4	BI_DC+/-	BI_DD+/-
5	BI_DC-/-	BI_DD- /-
6	BI_DB-/ RX-	BI_DA- / TX-
7	BI_DD+/-	BI_DC+/-
8	BI_DD-/-	BI_DC-/-

Note: "TX \pm " stands for transmit data \pm, "RX \pm " stands for receive data \pm, and "-" means unused.
5.2 1000Base-X Fiber Optic Port This series of switches provides 1000Base
This series of switches provides 1000 enase-
X fiber optic ports. When using an electrical port, the switch can be connected to other Ethernet terminal equipment via fiber optic jumper cables.
5.2.1 Classification of Fiber Optic Jumper Cables
5.2.1 Classification of Fiber Optic Jumper Cables
According to the transmission mode of light in fiber optic cables, they can be classified into mult imode fiber optic cables and single-
mode fiber optic cables. The center glass core of a multimode fiber optic cable is relatively thick elatively large, which limits the frequency of transmission of digital signals. Therefore the distan elatively large, which limits the frequency of transmission of digital signals. Therefore, the distan
ce of transmission for multimode fiber optic cables is relatively short (usually only a few kilomet ers). The center glass core of a single-
mode fiber optic cable is very thin (the core diameter is generally 9 or $10 \mu \mathrm{~m}$) and can only trans , the intermodal dispersion is very small, which is suitable for lo distance communication. In general, cables with orange jackets are multimode, while those with yellow jackets are single-mode.
5.2.2 Use of Equipment with Fiber Optic Jumper Cables

LC interface to LC interface fiber optic patch cord
Note: Please do not bend the fiber optic patch cord during use.
6. LED Indicator

Indicator	Status	Description
P1~P2	Green on	Power supply is normal
	Green off	Power failure or no power
Network interface	Green on	link connection is normal
	Green flash	Link communication is normal
	Green off	Link not connected or connection
$\begin{array}{\|c} \hline(1-28) \\ \text { ALM } \\ \hline \end{array}$	Red on	With alarm signal output
	Red off	No alarm signal output
RUN	Green on/off	Equipment abnormality
	Green flash	The device is running normally

Installation Guide

7.1 Installation Precautions
o avoid equipment damage and personal injury due to improper use, please follo
To avoid damage caused by the device falling, please place the device in a stable
O When supplying power to the device, pay attention to first confirm the voltage r ange and polarity of the power supply to avoid damaging the equipment due to inc
© To reduce the risk of electric shock, ensure that the equipment is well grounded in the working environment.
© When placing the switch, avoid dusty and electromagnetically strong areas.
7.2 Rack Installation

To install the product on a 1 U rack, follow these steps:
Step 1: Check the grounding and stability of the $1 \cup$
rack. Use screws to fix the mounting ears on both sides of the switch panel.
Step 2: Place the switch on a tray in the cabinet, move the switch to the appropriate position according to the actual situation, and ensure that
 Step 3: Use screws to fix the mounting ears on the fixed guide
rails at both ends of the 1 U rack, ensuring that the mounting ears of the
tray in each slot of the cabinet and the switch are securely fixed on the 1 U rack.

73 Groundin
Fix the grounding wire to the grounding screw on the switch, and ensure that the grounding system is relia bly connected.

7.4 Power input

Insert the power cord into the designated position of the 5-core terminal block.

7.5 Relay Alarm

The relay alarm terminal has 3 wire connection terminals and provides fault al arm output. NC-COM is normally closed. When the equipment fails, NC-
COM will show "short circuit"; in normal state, NC
COM shows "open circuit". NO
COM is normally open. When the equipment fails, NO-
COM will show "open circuit"; in normal state, NO-COM shows "short circuit".

Note: Connect two optical A and B with a fiber jumper, connect the TX of optical port A to the RX of optical port B, connect the RX of optical port A to th TX of optical port B, and ensure that the fiber jumper is correct use.

8. Management system login

his series of products provides a serial port

based management system program debugging port. The interface adopts RJ4 5 interface and is located on the front panel. It can be connected to a PC throu gh the attached cable to update and configure the device program.
DB9 Female

R145 crystal

9. Accessories

Name	QTY(UNIT)
Switch	1 PCS
Manual	1 PCS
Disc	1 PCS
Power cable	1PCS(single power) / 2PCS(dual power)
Console line	1 PCS
Warranty card	1 PCS
Certification	

10. Accessories

Model	Interface description			
	$\begin{array}{\|c\|} \hline 1000 \\ \text { Base- } \mathrm{X} \end{array}$	$\begin{array}{r} \hline 10 / 100 / 100 \\ 0 \text { Base- } \mathrm{T} \\ \hline \end{array}$	combo	$\begin{gathered} 10 \text { GBaseX } \\ (\mathrm{SFP}+) \end{gathered}$
UT-63424G-16GP8GB-4XGP-BNA	16 port	-	8 port	4 port
UT-63424G-16GT8GB-4XGP-BNA	-	16 port	8 port	4 port

1.The optical interface type for the above products is set to default as SFP slot. 2.The letter " A " in the product model suffix "BNA" indicates a single power sup ply input of 110/220VAC/DC (88264VAC/DC); while the letter "D" in the suffix "BND" indicates dual power supply input of $110 / 220 \mathrm{~V}$ ($88264 \mathrm{VAC} / \mathrm{DC}$).
3.The above is a partial list of product options. If you cannot find a satisfactory product model during the selection process or have other questions, you can onsult our marketing department for more information.

